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Abstract
Inaccurate labels in training data is a common
problem in machine learning. Algorithms have
been proposed to prune samples with label noise
(i.e., samples are far from the decision boundary
but still the label is inaccurate); training models
on such samples could cause poor model perfor-
mance. However, in many real applications, there
exist samples around the decision boundary that
are inherently difficult to label, leading to label
error. Such samples are important for model train-
ing because of their high learning value. Existing
pruning algorithm do not differentiate between
samples with label noise and label error, therefore
prunes both kinds of samples. This paper im-
proves an existing pruning algorithm in two ways:
it (a) prunes noisy samples and high-confidence
samples (with less learning value), and (b) pre-
serves the samples (potentially) with label error
that have a high learning value and gets accurate
labels for them (using multiple reviews). Our eval-
uation using publicly available and Meta internal
de-identified and aggregated data sets shows that
the combination of these ideas improve the base-
line pruning algorithm.

1. Introduction
Training data with inaccurate labels is a challenge to build-
ing high-quality machine learning models that generalize
well to unseen data (Zhou, 2018). A low-quality model
could have negative consequences for a domain, such as
integrity on a social media platform, where false negatives
or false positives can eventually lead to users leaving the
platform. For example, on Meta, a scammer missed by
the model can cause financial harm to good users. On the

1Department of Statistics and Probability, Michigan State Uni-
versity. This work is done during Yue Xing’s internship at Meta
Platforms, Inc. as a Ph.D. student at Purdue University. 2Meta Plat-
forms, Inc.. Correspondence to: Yue Xing <xingyue1@msu.edu>,
Ashutosh Pandey <ashutoshp@meta.com>.

DMLR Workshop at the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

other hand, a good user banned by the model will lead to a
poor user experience. Good users will be discouraged from
engaging with the platform in both cases.

While low label quality can deteriorate machine learning per-
formance (Zlateski et al., 2018; Kazai et al., 2013; Alonso,
2015), it is also harmful in real applications where actions
are taken based on the labels, e.g., (Sameera et al., 2021).
Researchers have proposed approaches to improve the ro-
bustness of machine learning models in the presence of
inaccurate labels. For example, (Zhang and Sabuncu, 2018)
improves the cross entropy loss to handle noisy labels, and
(Müller et al., 2019; Zhou et al., 2021) uses soft labels to
replace hard labels to smooth Y . Some researchers also
consider manipulating the samples, e.g., pruning inaccu-
rate samples or fixing potentially incorrect labels (Northcutt
et al., 2017; Ding et al., 2018).

The existing work on pruning samples mostly deals with
noisy labels, which are (randomly) flipped with respect to
the ground truth despite the classes being well separated.
We refer to this phenomenon as label noise where the same
reviewer labels the sample as positive and negative when
presented multiple times. (Kahneman et al., 2022) refers
to this phenomenon as within-person noise. Noisy samples
might not be difficult to label because they are far from the
decision boundary yet reviewers label them inaccurately.
Training on such noisy samples could lead to a poor-quality
model. (Northcutt et al., 2017) proposed the rank pruning
algorithm to prune noisy samples from the training process.
Specifically, the paper provides the theoretical framework
to identify samples to remove from the training data.

However, for many realistic domains, in addition to noisy
training samples, there might be the samples with inaccu-
rate labels when the labeling decision is difficult because the
samples are close to the decision boundary. Consequently,
the same sample is labeled as positive by some reviewers
and negative by others. We refer to this phenomenon as label
error. (Kahneman et al., 2022) refers to this phenomenon
as between-person noise. The samples close to the decision
boundary should not get pruned because they help a trained
model learn the decision boundary. Unfortunately, the prun-
ing algorithm (proposed by (Northcutt et al., 2017)) prunes
such samples (besides noisy samples) because it does not
differentiate between label noise and error when pruning
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(potentially) suspicious/inaccurately-labeled samples.

Our work improves the rank-pruning algorithm in two ways.
First, the improved algorithm does not prune all the suspi-
cious samples, particularly the ones close to the decision
boundary because they have a high learning value.1 To this
end, the improved algorithm learns the hyperparameters
(using the training data) to identify the samples with high-
learning values, and therefore, they are not pruned. Second,
in addition to noisy samples, the algorithm prunes confident
samples that do not provide learning value; as detailed later,
confident samples are ones that can be classified with high
accuracy by a trained model. Having too many confident
samples in training could distract the model from learning
the decision boundary(Katharopoulos and Fleuret, 2018).

Additionally, the paper shows that the performance of the
(improved) rank pruning algorithm can be further improved
as the erroneous sample count decreases in the training data.
To reduce erroneous samples, each sample is labeled by
multiple reviewers, and a majority vote decides the final la-
bel. Our formal analysis shows this labeling approach helps
get the correct labels, thereby reducing erroneous samples
by canceling the individual-level error, as also suggested by
(Surowiecki, 2005).

To distinguish between our contributions and existing works,
throughout this paper, we use “Theorem” to denote our new
results, and “Proposition” for the existing results.

1.1. Other Related Works

This section presents the literature in various areas which
are related to this work.

Robust Algorithms against Noisy Datasets In this paper,
we mainly focus on improving the rank-pruning algorithm in
(Northcutt et al., 2017). Besides the rank-pruning algorithm,
from the literature, e.g., (Song et al., 2022; Nigam et al.,
2020), there are many other ways to deal with (potentially)
inaccurate labels:

(1) Modify the loss function. Some papers consider chang-
ing the loss function to adapt to the potential change in the
label. For example, (Müller et al., 2019; Zhou et al., 2021)
uses soft labels to replace hard labels to smooth Y , and
(Zhang and Sabuncu, 2018) improves the cross entropy loss
to handle label error.

(2) Apply weights to different samples. Some studies apply
different weights to different samples to improve the train-
ing process. For instance, (Chang et al., 2017) improves
the training process by emphasizing high-variance samples

1Suspicious samples include both noisy and erroneous samples.
We hypothesize that the algorithm helps to prune most of the noisy
samples and a few erroneous samples.

around the decision boundary.

(3) Change the samples. Besides changing the loss function
or applying weighting schemes, some other works consider
modifying the possibly incorrect labels, and others consider
pruning samples with incorrect labels. (Northcutt et al.,
2017; 2021) and (Pleiss et al., 2020) use rank-pruning meth-
ods to identify samples with random noise. (Li and Gao,
2019) proposes another clustering algorithm to identify in-
correct labels. (Ding et al., 2018; Algan and Ulusoy, 2021)
replace labels with the model prediction to smooth the train-
ing process. (Cui et al., 2020) corrects labels by studying
label correlations in multi-task learning.

However, as far as we are aware, none of these approaches
differentiate between noisy and erroneous samples. More-
over, this paper provides a theoretical analysis showing that
multiple review helps in reducing label error that eventually
leads to performance gains for a model.

Importance Sampling While the rank pruning algo-
rithm in (Northcutt et al., 2017) motivates us to study
the erroneous labels, the importance-sampling approach
in (Katharopoulos and Fleuret, 2018) inspires us to also
prune confident samples, i.e., the samples which can be
easily learned by the machine learning model.

Importance sampling is a commonly used method to adjust-
ing the weights for the samples in order to reduce estimation
variance (Glasserman et al., 2000). Based on this idea,
(Katharopoulos and Fleuret, 2018) proposes to apply larger
weights for the samples around the decision boundary when
using neural networks for classification tasks. Through this
way, the training process can focus more on the uncertain
samples, i.e., samples with a higher learning value. Related
studies can be found in (Katharopoulos and Fleuret, 2017;
Nabian et al., 2021; Daw et al., 2022; Ariafar et al., 2021;
Arazo et al., 2021).

Different from (Katharopoulos and Fleuret, 2018), we utilize
the framework of rank pruning to prune confident samples.
The rank pruning algorithm categorizes suspicious samples
and confident samples, which is more flexible. proposed
algorithm In the applications of computer vision, i.e., there
is a clear decision boundary and the Bayes classifier achieve
100% accuracy, it is efficient to train only using samples
around the model decision boundary.

Besides the studies mentioned before in robust algorithms
against label noise, others, e.g., (Hwang et al., 2022), justify
that human label can be worse than pseudo-labels.

Dynamic Hyper-parameter Tuning There are various
ways to do hyper-parameter tuning.

For example, (Li et al., 2017) proposed to use a bandit
algorithm to efficiently do hyper-parameter tuning. In the
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beginning, a bench of candidate parameters is used to do
the training, and then they drop the candidates with poor
performance step-by-step.

In another study, (Shang et al., 2019) further simplifies the
algorithm of (Li et al., 2017) with the help of Bayesian opti-
mization. They design a distribution that randomly outputs
a candidate parameter. Each time they select a candidate
parameter, evaluate the reward, and update the distribution
to assign a higher probability to the specific candidate if the
reward is high.

2. Notation and Model Setup
Before describing the proposed method, we first introduce
some essential mathematical notations to be used in the data
generation model and the algorithms.

In this paper, we consider binary classification to classify
between 0 and 1. The scenario of erroneous label is con-
sidered as follows: Denote the ground-truth probability as
g0(x) := P (Y = 1 | X = x) for x in the support D, and
the Bayes classifier is f0(x) = 1{g0(x) > 1/2}. Mathemat-
ically, label error refers to the case where g0 takes values
other than 0 or 1.

In terms of label noise, instead of observing the true la-
bel Y , we observe a perturbed label Z, where the flip-
ping probabilities are P (Z = 1 | Y = 0) = ρ0 and
P (Z = 0 | Y = 1) = ρ1 for some constants ρ0, ρ1 > 0
which are independent of x. The flipping of labels with
probabilities (ρ0, ρ1) is what is referred to as label error in
this paper. We also denote g(x) := P (Z = 1 | X = x).

Besides the above definitions, we also follow (Northcutt
et al., 2017) to define the probability of Z being 1 as pz1 =
P (Z = 1). The conditional probability of the hidden true
label Y given the observed label Z are π1 = P (Y = 0 |
Z = 1) and π0 = P (Y = 1 | Z = 0) respectively.

In practice, it is impossible to obtain the ground-truth g0 or
even the perturbed version g. One could only obtain esti-
mated model score ĝ to estimate g from the noisy training
data. Denote ∆g(x) = ĝ(x)− g(x).

3. Robust Algorithm Against Label Noise and
Label Error

In this section, we present the intuition of the existing prun-
ing algorithm and our proposed adaptations.

3.1. Intuition Behind the Robust Pruning Algorithm

Figure 1 illustrates the pruned suspicious and confident
samples. The pruned suspicious samples are the ones that
have the label and the trained model prediction differ a lot,
e.g., a negative sample with a prediction score of 0.95 where

the score varies between 0 and 1 such that a higher value
indicates higher chances of a label being positive.

Among suspicious samples in the training data, the samples
with random noise are the ones that have their label and
trained model prediction differ a lot, e.g. a negative sam-
ple with a prediction score of 0.95, where the score varies
between 0 and 1 such that a higher value indicates higher
chances of a label being positive. Confident samples refer to
those whose model predictions can achieve a high accuracy,
e.g. a negative sample with a prediction score of 0.05. A
graphical illustration is in Figure 1.

Figure 1. Suspicious and confident samples. Blue dashed curve:
the decision boundary of the trained machine learning model.
As a result, if we prune the suspicious samples and confi-
dent samples, the other samples will be those which are on
average closer to the decision boundary. Training can then
focus more on learning the decision boundary.

3.2. Algorithms

Our algorithms are shown in Algorithm 1 for the main al-
gorithm and Algorithm 2 for the details of rank pruning.
The idea is that, during the training, if the main algorithm
is accurate enough, one can use Algorithm 2 to prune the
suspicious and confident samples.

Algorithm 1 Main Algorithm
Input: Training data, number of iterations T , other pa-
rameters in the base algorithm.
for t = 1 to T do

Calculate the predicted score for each sample.
Calculate the gradient (and Hessian if needed).
Calculate the accuracy Acct of the current batch.
if Acct > θ then

Use the rank-pruning algorithm with (α, β) to re-
move samples in the current iteration.

end if
Update the model using the gradient (and Hessian if
needed).

end for
Output: Output model.
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Algorithm 2 Rank Pruning
Input: Training data, suspicious threshold rate α, confident threshold rate β, the predicted score function at iteration t gt.
Denote P and N as the set of samples with positive/negative labels respectively. Take pz1 = |P |/(|P | + |N |) as the
proportion of the positive Z in the data set.
Calculate

LBy=1 = Ex∈P [gt(x)], UBy=0 = Ex∈N [gt(x)].

Further split N and P by the model score, i.e., calculate

Ny=1,t = {x ∈ N | gt(x) ≥ LBy=1}, Py=1,t = {x ∈ P | gt(x) ≥ LBy=1},
Ny=0,t = {x ∈ N | gt(x) ≤ UBy=0}, Py=0,t = {x ∈ P | gt(x) ≤ UBy=0}.

Construct the estimate of P (Z = 0 | Y = 1) and P (Z = 1 | Y = 0) (ρ1 and ρ0) for this tth iteration via

ρ̂1,t =
|Ny=1,t|

|Ny=1,t|+ |Py=1,t|
, ρ̂0,t =

|Py=0,t|
|Py=0,t|+ |Ny=0,t|

(1)

Construct the estimate of P (Y = 0 | Z = 1) and P (Y = 1 | Z = 0) (π1 and π0) for this tth iteration via

π̂1,t =
ρ̂0,t
pz1

1− pz1 − ρ̂1,t
1− ρ̂1,t − ρ̂0,t

, π̂0,t =
ρ̂1,t
pz1

p,t − ρ̂0,t
1− ρ̂1,t − ρ̂0,t

. (2)

Remove suspicious samples: Remove απ̂1,t|P | samples in P with the least gt, and απ̂0,t|N | in N with the largest gt.
Remove samples with less information: Remove β(1− π̂1,t)|P | samples in P with the largest gt. Remove β(1− π̂0,t)|N |
samples in N with the least gt.
Denote np,t and nn,t as the number of remaining samples in the batch. Take weight wp,t and wn,t for the remaining
positive/negative samples so that np,twp,t/(nn,twn,t) = |P |/|N |.
Output: Samples which will be removed.

Pruning for Suspicious Samples The full algorithm of
rank pruning is in Algorithm 2. Similar to (Northcutt et al.,
2017), we classify samples into four categories based on the
model score and the label (positive samples with high scores,
positive samples with low scores, etc.), and calculate ρ̂1,t,
ρ̂0,t, π̂1,t, and π̂0,t to get the estimate of P (Y = 0 | Z = 1)
and P (Y = 1 | Z = 0), i.e., the probability of the true
label being different to the observed label. Based on these
estimations, we order positive and negative samples respec-
tively based on the model scores, and prune the positive
samples with smallest scores and the negative samples with
the largest scores.

In Algorithm 2, it is intuitive to construct the estimate of
the flipping probability ρ0 = P (Z = 1 | Y = 0) and
ρ1 = P (Z = 0 | Y = 1) as in (1). In terms of (2) for
π1 = P (Y = 0 | Z = 1) and π0 = P (Y = 1 | Z = 0), we
present the derivation in Appendix A.2.

A difference to (Northcutt et al., 2017) is that, instead of
pruning all π̂1,t|P̃t| positive samples with small scores and
π̂0,t|Ñt| negative samples with large scores, we take the
pruning rate as απ̂1,t (απ̂0,t) for some α ∈ (0, 1) deter-
mined by some hyper-parameter tuning methods, e.g., cross
validation, or Bayes approaches.

Pruning for Confident Samples Since the rank pruning
algorithm (Northcutt et al., 2017) prunes samples with la-
bel noise, we can also take one more step to prune some
confident samples. Based on (Katharopoulos and Fleuret,
2018), the data around the decision boundary help the model
learn better, so removing confident samples can also help
the model focus more around the decision boundary.

In Algorithm 2, different from the suspicious samples in
which we want to prune all those with label noise, for confi-
dent samples, we cannot prune all of them because they still
provide important information that helps train the model. In
the experiments, we use hyper-parameter tuning to select β.

Remark 1. Since the proposed method involves (α, β), one
may question why we still need the estimate of (π0, π1) in-
stead of directly pruning αn samples with random noise and
βn confident samples. There are two main reasons. First,
although one can directly tune α and β without considering
(π0, π1), the existence of (π0, π1) simplifies the tuning of
(α, β) and we only need to search in [0, 1]. Second, based on
(Northcutt et al., 2017), the estimation of (π0, π1) is robust,
which could further ensure the robustness of our algorithm.
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4. Multiple-Reviewed Samples
In this section, instead of being labeled only once, we con-
sider a multi-review process so that each sample is reviewed
by at least two reviewers. Using such an approach, we can
get more accurate final labels. We study how the proposed
pruning method is affected by this multi-review process.

4.1. Illustration of the Multi-Review Process

Figure 2. A Simple Multi-Review Process.

Figure 2 illustrates our multiple-review process. For each
sample, two reviewers are firstly assigned to the sample and
give their labels. If these two labels disagree with each other,
a third reviewer will be assigned and label the sample. As
a result, the possible outcomes are: (1) two same labels, or
(2) three labels (2 positive and 1 negative or vise versa). We
use the majority vote as the final outcome.

One can still apply Algorithm 1 to conduct pruning when
training the model using multi-review data. However, when
using the formulas in Algorithm 1 to determine the pruning
thresholds, the values of UB, LB will get changed because
the data distribution gets changed. To differentiate these
quantities for single-review and multi-review processes, we
add “ ˜ ” in above the notations for multi-review data, i.e.,
P vs P̃ , ρ0 vs ρ̃0, and π0 vs π̃0, etc. For example, given the
true label Y , ρ0, ρ1 represents the flipping probabilities for
an individual noisy label. Since every reviewer can flip/not
flip the label, ρ̃0 and ρ̃1 represent the final probability of
whether the aggregated final label is flipped or not in the
multi-review process.

4.2. Effect of Multiple-Reviewed Samples on the
Pruning Algorithm

In this section, we show that the multi-review process can
further improve the original rank pruning algorithm in addi-
tion to our algorithm adaptations in Section 3.

The analysis is hard when directly considering complicated
scenarios, i.e., label error occurs, or the estimate ĝ involves
estimation error. To simplify the understanding, we start
from the ideal case with no label error and estimation error,

i.e., g0 ∈ {0, 1} and ĝ ≡ g0, and then we extend to other
cases, i.e., the case with estimation error but no label error
(non-ideal, non-overlap case), and the case with label error
but no estimation error (overlap case). We show that the
multi-review process can further improve the robustness of
the rank pruning algorithm. Given all these improvements,
we conclude that the rank pruning algorithm can benefit
from the multi-review process.

Ideal Case We first consider the case where g0 is only 0
or 1 and ĝ ≡ g. In this case, there are several changes to the
data distribution and the training process.

First, the following theorem shows that a larger proportion
of samples have a more accurate label with less label error.

Theorem 1. Assume ρ0 = ρ1 = ρ, then ρ̃ < ρ.

To prove Theorem 1, assume for each single review, ρ0 =
ρ1 = ρ for some ρ ∈ [0, 0.5), then the probabilities of the
sample being reviewed by two/three reviewers become

P (Three reviews) = 2ρ(1− ρ),

P (Two reviews) = ρ2 + (1− ρ)2.

Assume the hidden true label Y = 1. If a sample has
three reviews, since the final label is now determined by
the third review, there is still ρ probability that the final
label is 0. However, when there are only two reviews, the
flipping probability of the final label gets changed. There
is ρ2/(ρ2 + (1 − ρ)2) probability of having two labels 0,
which is smaller than the original ρ. The overall flipping
probability ρ̃ for the final label therefore is smaller.

Second, the consequence of a smaller ρ̃ is that, Algorithm
2 has a more stable P̃y=1 as the variance of 1{z ∈ P̃y=1}
is smaller. We omit the subscript t for P̃y=1 to simplify the
notation. If we further assume P (Y = 1) = 0.5, then

P (z ∈ P̃y=1 | Three reviews) =
2ρ(1− ρ)2

2ρ(1− ρ)
,

P (z ∈ P̃y=1 | Two reviews) =
(1− ρ)2

ρ2 + (1− ρ)2
,

where the second one > 1− ρ.

Recall that for a random variable ξ following Bernolli distri-
bution, the variance is (1−Eξ)Eξ. Thus, the binary variable
1{z ∈ P̃y=1} has an expectation farther from 0.5, and the
estimation variance becomes smaller, increasing the stability
of the algorithm. Similar case happens for Ñy=0 and others.

Non-ideal, Non-Overlap Case We now consider the case
where ĝ is not identical to g. We still impose the non-overlap
condition g0 ∈ {0, 1}.
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Based on (Northcutt et al., 2017), when ĝ is accurate enough,
one can still obtain an accurate estimate of ρ̂i,t for i = 0, 1
when g0 ∈ {0, 1}:

Proposition 1 (Theorem 4 of (Northcutt et al., 2017)). Re-
call that ∆g(x) = ĝ(x) − g(x) and (N,P ) are the sets
of samples with negative/positive Z respectively. Assume
g0(x) ∈ {0, 1} for all x ∈ D, in the single-review process,

If ∀x ∈ N , ∆g(x) < LBy=1 − ρ0, then ρ̂1,t = ρ1.

If ∀x ∈ P , ∆g(x) > −(1− ρ1 − UBy=0), then ρ̂0,t = ρ0.

Based on Proposition 1, the pruning algorithm outputs ro-
bust ρ̂1,t and ρ̂0,t, tolerant to the estimation error in ĝ.

Denote Γ = max(|LBy=1 − ρ0|, |1− ρ1 −UBy=0|) as the
tolerance, i.e., if the estimation error is below Γ, then the
pruning algorithm gives the correct pruning thresholds. We
consider how the tolerance is affected when using multi-
review data and get the result below:

Theorem 2. Denote Γ as the tolerance for single-review
data and Γ̃ as the one for multi-review data. Assume ρ0 =
ρ1 = ρ for some ρ ∈ [0, 0.5) and pz1 = 0.5, then Γ̃ < Γ.

The original ranking pruning algorithm is robust in the sense
that, when ĝ involves small errors, the estimate ρ̂0 and ρ̂1 are
still accurate (see Proposition 1). The tolerance Γ quantifies
the robustness. When |∆g(x)| ≤ Γ for any x, we have
ρ̂0 = ρ0 and ρ̂1 = ρ1. Based on Theorem 2, when using
multi-review data, the algorithm becomes more robust.

Overlap Case Based on (Northcutt et al., 2017), when
there is overlap between P and N , UB will be overesti-
mated and LB will be underestimated:

Proposition 2 (Lemma 3 in (Northcutt et al., 2017)). As-
sume g = ĝ, in the single-review process,

LBy=1 = LB∗
y=1 −

(1− ρ0 − ρ1)
2

pz1
∆p0,

UBy=0 = UB∗
y=0 +

(1− ρ0 − ρ1)
2

1− pz1
∆p0,

where LB∗
y=1 = (1−ρ1)(1−π1), UB∗

y=1 = (1−ρ1)π0+
ρ0(1−π0) and they are the correct decision thresholds, and
∆p0 = |P ∩N |/|P ∪N |.

When using multi-review data, we have the following result:

Theorem 3. Assume ρ0 = ρ1 and pz1 = 0.5, then

(1− ρ0 − ρ1)
2

pz1
∆p0 >

(1− ρ̃0 − ρ̃1)
2

p̃z1
∆p̃0,

i.e., the difference between L̃By=1 and L̃B
∗
y=1 is smaller

than the difference between LBy=1 and LB∗
y=1. A similar

result holds for ŨBy=0.

Based on Theorem 3, using multi-review data, the pruning
algorithm becomes more robust even when g0 ∈ [0, 1].

Remark 2. We do not consider the non-ideal but overlap
case, i.e., ĝ ̸= g but g0 ∈ [0, 1]. Since multi-review data
requires more labels, it is more expensive than the single-
review data. When the number of samples are the same, it is
obvious that multi-review data lead to better ĝ and are more
preferred. However, if the number of total reviews is fixed,
it is hard to track the change in ĝ. Differences in model
assumptions and machine learning algorithms could affect
the performance of ĝ.

5. Experiments
In this section, we conduct numerical experiments for some
public datasets to verify the effectiveness of the proposed
algorithm and the effect of multi-review data.

5.1. Data Description

We use HTRU2 in the experiments (Dua and Graff, 2019).
For HTRU2, we use the eight numerical features. It contains
pulsar candidates collected during the High Time Resolution
Universe Survey. There are 17,898 total examples.

In the experiments, we study both single-review and multi-
review. Since it is expensive in practice to do multiple
review for all samples, we control the total number of re-
views in the datasets. For example, we set the total number
of reviews to be N , then use the multiple review process to
get new samples. Each sample may consume either 2 or 3
reviews, and the final number of rows in the data set is less
than N/2. We only add label noise in the training set.

To imitate label noise, we take ρ1 = ρ0 = ρ = 0.45 and
perturb the labels for positive and negative samples, and
repeat the experiment 30 times to get the mean and standard
deviation of the misclassification rate.

5.2. Observations

We first use the HTRU2 dataset to compare the performance
of the vanilla algorithm, the rank pruning algorithm in
(Northcutt et al., 2017) (Prune all), and the proposed al-
gorithm. We provide Prune (sus) which intends to prune
suspicious samples (mostly) with random noise, and Prune
(sus, conf) to prune both suspicious and confident samples.
The results are in Table 1.

There are several observations. First, the proposed method
is better than the others, verifying the effectiveness of the
proposed algorithm. Second, when there are label noise and
estimation error involved, directly pruning all suspicious
samples may lead to a performance even worse than the
vanilla algorithm. It is therefore essential not to prune all
suspicious samples. Finally, while the proposed algorithm
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Mean Std
Vanilla Prune all Prune (sus) (sus, conf) Vanilla Prune all Prune (sus) (sus, conf)

Single label 0.06215 0.07304 0.05909 0.05909 0.04282 0.04770 0.03855 0.03855
Multi label 0.04347 0.07341 0.04167 0.03838 0.01867 0.07666 0.01953 0.01896

Table 1. HTRU2: The mean and variance of the error rate in the testing data set. Training size: 5000. XGBoost.

Human label Count True scam True not scam
Scam 50 17 (34%) 33 (66%)
Not scam 50 42 (84%) 8 (16%)

Table 2. The human label quality of suspicious samples.

works with single-review data, it also works in the multi-
review data, and it improves more when using multi-review
data.

Remark 3. From the way of imitating multi-review process
in the experiments, we are adding different label noise given
a label Y , rather than adding a multi-review process start-
ing from P (Y = 1 | X = x). The impact is limited in
HTRU2 data set because the evaluation error is very low.

In terms of the theory, the difference of the multi-review
process does not change the claim of the theoretical results.

6. Real-World Data Analysis
6.1. Data Description

We use Meta scammer detection data as a real-world ex-
ample. Because of the large volume of review tasks, the
scammer detection data contains both noisy and erroneous
labels.

Label Quality In terms of the quality of this data set, it
has samples with label noise. When investigating reviews
from human reviewers, we found some examples of arbi-
trary mistakes. In addition, the data set contains label error.
Perhaps due to reviewer’s unfamiliarity with policy in corner
cases or insufficient user information, different reviewers
may make different decisions for the same review object.

Although our aim is to use high-quality labels to improve
machine learning models, we also want to emphasize that
high-quality labels themselves are very important. A user
will be banned if the user is identified as a scammer. If a
false-positive user is banned, this is harmful to the business
of both the individual and Meta.

In a preliminary study, we pick 100 training samples whose
label and model score differ a lot, i.e., negative samples
with scores ≥ 0.9 and positive samples with scores ≤ 0.1,
and had them reviewed by internal experts. The results are
summarized in Table 5. One can see that pruning suspicious
samples is an applicable method for this dataset.

Multi-review process In terms of the multi-review pro-
cess for this data set, there is a slight difference to the multi-
review process in Section 4. In Section 4, we start with
two reviewers to simultaneously review the sample. In
production, we adjust the process to reduce the review con-
sumption.

Figure 3 shows the multi-review process in production. Af-
ter the first reviewer labels the sample, we applied another
ML model to determine whether the human label is likely
correct. If the ML model is not confident, the sample will
be passed to the second reviewer. A third reviewer will label
the sample if the two human labels are inconsistent. Based
on the above multi-review process, a sample can have one,
two, or three labels. For evaluation, given the limited review
capacity, we (a) applied multiple reviews only on samples
labeled as positive by the first reviewer, with the intent to
focus on preventing false positives, and (b) not all samples
with a positive first label were are sent for multiple reviews.

Data Summary Below is some detailed information about
the dataset in this experiment.

There are around 1000 features in the data set, including
categorical features (e.g., country) and various score features
based on the contents of the user’s profile. After expanding
the categorical features into dummy variables, there are
around 3000 numerical features.

In the data set, there are total 150k samples.

(1) Multi-review data: There are 62323 samples collected
from the multi-review process. In this set, 7055 samples
have one label, 44335 have two labels. All the 62323 sam-
ples have a positive first label, and 4180 have a final negative
label.

(2) Single-review data: Most samples in production only
have one review, and we use a small proportion in this ex-
periment. In this set, there are total 87677 samples. After
combining all of the multi-review and single-review data,
we adjust the number of negative samples so that the posi-
tive/negative ratio is around 0.5. There are negative 61239
samples in the single-review data.

Training Details We use XGBoost to train the model and
use hyper-parameter tuning to select the best parameters. We
also use a multi-review process. There are some differences
to the process mentioned in Section 4 to save human review
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Figure 3. The new multi-review process in production.

capacity.

Experiment Results We run evaluation on two datasets:

(1) Single review data: an evaluation dataset with single-
review samples. The positive/negative ratio is around 0.5.

(2) Multi review data: an evaluation dataset with multi-
review samples. All the samples have a positive first label.
Around 95% samples have a positive final label.

The results are summarized in Table 3. Besides AUC, we
also report the recall at certain precision thresholds for the
single-review data. Since false positive severely affects user
experience, we take a high precision threshold. For the
multi-review data, the positive rate is high, so the precision
is automatically high.

One can see that in Table 3, after utilizing multi-review
labels, test set performance improves in all metrics across
all evaluation data sets. In addition, after further applying
the pruning method, there is an additional performance
improvement. We further provide Figure 4 for a graphical
view of the ROC.

Data First label Multi Multi (prune)
Single AUC 0.8600 0.8617 0.8632

R@P=0.9 0.5273 0.5469 0.5561
R@P=0.8 0.9168 0.9151 0.9192

Multi AUC 0.6464 0.7242 0.7401

Table 3. Evaluation performance in two different data sets. Both
multi-review data and the proposed pruning method improves the
performance. R@P=0.8: recall when precision equal to 0.8.

7. Conclusion
The paper proposes two improvements for the ranking prun-
ing algorithm (Northcutt et al., 2017). In the presence of two
kinds of suspicious samples (noisy and erroneous samples),
the first improvement helps to prune only samples with
label noise, and tries to avoid pruning samples with label

Figure 4. Evaluation performance of the proposed method and
multiple reviews in scammer detection data.

error. The second improvement prunes high confidence sam-
ples. In addition, the paper presents a theoretical analysis to
show how the multiple review process can help reduce label
noise. To summarize, the performance of the rank pruning
algorithm improves by the combination of (a) pruning high-
confidence (with less learning value) and noisy samples, and
(b) preserving the samples with (potentially) label error that
have high learning value and producing accurate labels for
them using multiple reviews.

There are several possible future directions. First, the pro-
posed algorithm performs well for the samples around the
decision boundary when the label noise is large, but not
when the label noise is small. One may design additional
algorithms to determine whether using a certain model to
train a certain data set can be benefit from our proposed
algorithm. Second, one can consider whether the proposed
algorithm can be extended to multi-class classification tasks.
Finally, while we are using hyper-parameter tuning to select
(α, β), one may simplify the algorithm via dynamic hyper-
parameter tuning algorithms to reduce the computation cost.
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A. Proofs
A.1. Theorem 2 and 3

For Theorem 2, we calculate ρ̃0, ρ̃1, ŨB and L̃B for the multi-review process. In both examples, we assume ρ1 = ρ0 = ρ
and pz1 = 1/2, thus ρ̃0 = ρ̃1 = ρ̃ for some ρ̃.

First, for ρ̃,

ρ̃ = P (two incorrect labels)
= P (the first two labels are incorrect) + P (there are three labels and two are incorrect)
= ρ2 + 2ρ2(1− ρ)

= ρ2(3− 2ρ).

Then we can calculate ŨB using ρ̃ as follows

ŨBy=0 = 0.5ρ̃+ 0.5(1− ρ̃),

which means that

ŨBy=0 − (1− ρ̃) = 0.5ρ̃− 0.5(1− ρ̃) = 0.5(2ρ̃− 1).

As a result, if we compare the above quantity with the one for single-review data, we obtain

ŨBy=0 − (1− ρ̃)− UBy=0 − (1− ρ)

= ŨBy=0 − UBy=0 + ρ̃− ρ

= 2(ρ̃− ρ) < 0.

This proof also extends naturally to Theorem 3.

A.2. Derivation of Equation (2)

Observe that

ρ0(1− pz1 − ρ1) = ρ0[(1− ρ1)− pz1]

= ρ0[P (Z = 1 | Y = 1)− P (Z = 1)]

= ρ0[P (Z = 1 | Y = 1)− P (Z = 1 | Y = 1)P (Y = 1)− P (Z = 1 | Y = 0)P (Y = 0)]

= ρ0P (Y = 0)[P (Z = 1 | Y = 1)− P (Z = 1 | Y = 0)]

= P (Z = 1, Y = 0)(1− ρ1 − ρ0)

= π1pz1(1− ρ1 − ρ0).

As a result,

π1 =
ρ0(1− pz1 − ρ1)

pz1(1− ρ1 − ρ0)
,

and one can construct the estimate of π̂0 using ρ̂0,t and ρ̂1,t. Similarly one can obtain the estimate of π0 in (2).

Note that the above derivation does require knowledge of g.


